Adaptive Optimization for Petascale Heterogeneous CPU/GPU Computing

Canqun Yang, Feng Wang, Yunfei Du, Juan Chen, Jie Liu, Huizhan Yi and Kai Lu
School of Computer Science,
National University of Defense Technology, P.R.China
Agenda

- Introduction
- Issues
- Solutions
- Results

TianHe-1 SuperComputer
Introduction

Homogeneous computer systems
- Cray Jaguar with 224,000+ CPU cores

Heterogeneous computer systems
- Accelerators: CELL, GPGPU, FPGA, ClearSpeed
- IBM Roadrunner (the first petascale supercomputer)
 - Power + CELL
- NUDT Tianhe-1
 - Xeon Quad-core CPUs + AMD 4870 GPUs
 - ranked No.5 in November 2009 on Top500 list
 - ranked No.7 in June 2010
Overview of TianHe-1 system
Overview of TianHe-1 system

- One compute element
 - one quad-core Intel Xeon processors
 - 32GB shared memory
 - ATI Radeon HD4870 GPU chips
 - RV770 chip
 - 1GB local memory per chip

- Interconnection
 - two-level QDR Infiniband switches
 - 40 Gbps aggregate bandwidth
 - 1.2us latency

- The peak performance is 1.206 PFLOPS
Overview of TianHe-1 system

- Compared with Cell-accelerated system

<table>
<thead>
<tr>
<th></th>
<th>GPU-acc System</th>
<th>Cell-acc System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerator Local Memory</td>
<td>1 GB</td>
<td>8 GB</td>
</tr>
</tbody>
</table>
| Bandwidth between host and accelerator | Host <-> PCI-E: ~500MB/s
 | PCI-E <-> GPU: 5GB/s | ~2 GB/s |
| Memory Bandwidth of the accelerator | up to 115GB/s | 25.6GB/s |
Issues

- CPUs should not be ignored
 - CPUs: 214.96 TFLOPS
 - GPUs: 942.08 TFLOPS

- Load balance across CPUs and GPUs

- Communications between CPUs and GPUs
Solutions

- We developed a **framework** to combine multiple programming models to make full use of the CPUs and GPUs.

- We present an **adaptive partitioning technique** to distribute the computations across the CPU cores and GPUs to achieve well-balanced workloads with **negligible runtime overhead**.

- We present a **software pipelining technique** for GPU computing to hide effectively the communication overhead between the CPU and GPU memories.

- We employed a **combination method** consisting some traditional and important optimizations to implement a version of Linpack, making TianHe-1 the 5th fastest supercomputer at that time.
Hybrid programming and executing model
Linpack Benchmark

- Solves a random dense linear system of equations
- Complexity is \((2/3)N^3 + 2N^2 + O(N)\)
 \[Ax = b; \quad A \in \mathbb{R}^{n \times n}; \quad x, b \in \mathbb{R}^n \]
- Ranking supercomputers in the Top500.

- Using LU decomposition method
 - The matrix update: the matrix-matrix multiply (DGEMM) which is an \(O(N^3)\) operation
 - Upper (U) matrix factor: a triangular solve with multiple right-hand-sides (DTRSM) kernel which is an \(O(N^2)\) operation
Adaptive partitioning in the Linpack

- **Split DGEMM**
 - $C = A \times B + C$
 - $C_0 = A_0 \times B + C_0$
 - $C_1 = A_1 \times B + C_1$

- **Determine the split ratio**
 - Statically?
Adaptive Optimization for Petascale Heterogeneous CPU/GPU Computing

Adaptive partitioning in the Linpack
Adaptive partitioning in the Linpack

- Tune the split ratio according to the scale (M*N*K) of DGEMM
 - \(W_{\text{GPU}} = W \times \text{GSplit} \), \(W_{\text{CPU}} = W \times (1 - \text{GSplit}) \)
 - \(\text{GSplit} = \frac{P_{\text{GPU}}}{(P_{\text{GPU}} + P_{\text{CPU}})} \)
 - \(M \times K \times N \approx M' \times K' \times N' \)

\(M \): the workload for a program
\(W_{\text{GPU}} \): the workload to GPU
\(W_{\text{CPU}} \): the workload to CPU
\(\text{GSplit} \): The fraction of the workload mapped to the GPU
\(P_{\text{GPU}} \): actual GPU performance for workload
\(P_{\text{CPU}} \): actual CPU performance for workload
Adaptive partitioning in the Linpack

- The print screen of Linpack test

```
SPLIT[0]A (2013.8GFlops), mnk=34048,24320,1216 m_gpu=29240,m_cpu=4800, split=0.858815
DGEMM[0]: tab=N,N mnk=29240,24320,1216 ldbc=34048,1216,35264 GPU=10.66s,162.18G
DGEMM[0]: tab=N,N mnk=4808,24320,1216 ldbc=34048,1216,35264 CPU=9.93s,28.63G

SPLIT[0]A (100.7GFlops), mnk=34048,1216,1216 m_gpu=28136,m_cpu=5912, split=0.826444
DGEMM[0]: tab=N,N mnk=28136,1216,1216 ldbc=34048,1216,35264 CPU=0.64s,130.81G
DGEMM[0]: tab=N,N mnk=5912,1216,1216 ldbc=34048,1216,35264 CPU=0.62s,27.98G

SPLIT[0]A (100.7GFlops), mnk=34048,1216,1216 m_gpu=28136,m_cpu=5912, split=0.826444
DGEMM[0]: tab=N,N mnk=28136,1216,1216 ldbc=34048,1216,35264 GPU=0.63s,132.17G
DGEMM[0]: tab=N,N mnk=5912,1216,1216 ldbc=34048,1216,35264 CPU=0.62s,28.04G

SPLIT[0]A (2013.8GFlops), mnk=34048,24320,1216 m_gpu=28968,m_cpu=5080, split=0.851000
DGEMM[0]: tab=N,N mnk=28968,24320,1216 ldbc=34048,1216,35264 GPU=10.58s,161.93G
DGEMM[0]: tab=N,N mnk=5080,24320,1216 ldbc=34048,1216,35264 CPU=10.51s,28.59G

SPLIT[0]A (100.7GFlops), mnk=34048,1216,1216 m_gpu=28064,m_cpu=5884, split=0.824425
DGEMM[0]: tab=N,N mnk=28064,1216,1216 ldbc=34048,1216,35264 GPU=0.63s,131.96G
DGEMM[0]: tab=N,N mnk=5884,1216,1216 ldbc=34048,1216,35264 CPU=0.65s,27.05G

SPLIT[0]A (100.7GFlops), mnk=34048,1216,1216 m_gpu=28288,m_cpu=5760, split=0.830893
DGEMM[0]: tab=N,N mnk=28288,1216,1216 ldbc=34048,1216,35264 GPU=0.63s,132.77G
DGEMM[0]: tab=N,N mnk=5760,1216,1216 ldbc=34048,1216,35264 CPU=0.61s,27.99G
```
Software Pipelining Method

- The communication is severe
- Our solution
 - Separate one task into three phases
 - Input data
 - Computation
 - Output the result back to the host
 - Overlap computation and data transferring
Software Pipelining Method

- prologue/loop body/epilogue
- \(\text{Time} = T_{\text{input}} + T_{\text{output}} + N \times T_{\text{execute}} \)
Software Pipelining Method

- Work splitting
 \[A \times B = C \]
 \[\begin{pmatrix} A_1 \\ A_2 \end{pmatrix} \times \begin{pmatrix} B_1 \\ B_2 \end{pmatrix} = C \]

- Four tasks
 \[T0 : C_1 = A_1 \times B_1 \]
 \[T1 : C_2 = A_1 \times B_2 \]
 \[T2 : C_3 = A_2 \times B_1 \]
 \[T3 : C_4 = A_2 \times B_2 \]
Software Pipelining Method

- Optimize 1: Overlap GPU computing with output
 - the blocking matrix multiplication
 - Double output buffers: CB₀ and CB₁
Software Pipelining Method

- Optimize 2: Data reuse
 - \(T_0, T_1, T_3, T_2 \)
 - \(T_0 : C_1 = A_1 \times B_1 \)
 - \(T_1 : C_2 = A_1 \times B_2 \)
 - \(T_3 : C_4 = A_2 \times B_2 \)
 - \(T_2 : C_3 = A_2 \times B_1 \)
 - \(T_0(A_1 B_1) \ T_1(B_2) \ T_3(A_2) \ T_2(B_1) \)
Software Pipelining Method

- Optimize 3: Overlap GPU computing with the input of the next task
Adaptive Optimization for Petascale Heterogeneous CPU/GPU Computing

Write A Write B Read C

0 1 2 3

0 1 2 3

0 1 2 3
Experiment and Evaluation

- Single compute element
 - 1CPU + 1GPU chip
 - One thread per cpu core
 - Intel Math Kernel Library 10.2.1.017 (MKL) for CPU
 - Vendor’s library: ACML-GPU 1.0 (AMD Core Math Library for Graphic Processors)
 - Our BLAS library
Results of DGEMM

- The adaptive mapping improved 14.64%
- The pipeline method got 7.61%
- Overall achieved 22.19% improvement
Results of Linpack

- 196.7 GFLOPS for a matrix of size $N = 46000$
- 70.1% of the peak on one compute element
Results of Multi-Cabinets

- Scaling efficiency is 87.76% from 1 to 80 cabinets. TFLOPS
Results of full configuration

- Performance of Linpack running on TianHe-1
 - 563.1 TFLOPS
Thanks