Performance Analysis of Multi-level Time Sharing Task Assignment Policies on Cluster-based Systems

Malith Jayasinghe, Zahir Tari and Panlop Zeephongsekul

RMIT University, Australia

23-09-2010
Cluster-based systems: Cost-effective and scalable.

Task assignment policy: Assigns tasks to hosts subject to a specific set of rules.

Task assignment policy has a significant impact on the overall performance of the system. Aim is to maximise performance.
Computer workloads are highly variable: distributions that represent them are 'Heavy-tailed' [Arlitt and Jin 1999, Arlitt and Williamson 1996, Barford et al. 1999].

Heavy-tailed workloads are represented using Pareto and Bounded Pareto Distribution.

- Decreasing failure rate
- High variance
- Heavy-tailed distributions have heavier tails than the exponential distribution:
 - Unix process CPU requirements ($1 < \alpha < 1.25$)
 - Size of files transferred through the Web ($1.1 < \alpha < 1.3$)
 - Size of files stored in Unix file systems
 - I/O times
 - Sizes of FTP transfers in the Internet ($0.9 < \alpha < 1.1$)
Size-based policies have shown significant performance improvements over traditional task assignment policies under realistic workload conditions (i.e. heavy-tailed workloads).

1. Policies that assume prior some knowledge actual processing requirements (task sizes) of tasks (Type 1)
2. Policies that assume no prior knowledge about actual processing requirements (task sizes) of tasks (Type 2)
Our aim is to devise policies to efficiently schedule realistic computer workloads with no prior knowledge about actual processing requirements (task size) of tasks (Type 2)

- Dynamic web content (PHP, CGI, DB queries)
- Scientific workloads

Dynamic content accounts for a significant percentage of web content being requested.

For this type of tasks, the server is the bottleneck [Cardellini et al., 2002]

Much existing work assumes processing requirements of tasks are known \textit{a priori} (i.e. static web requests)

Efficient scheduling of tasks with unknown sizes is a challenging problem: difficult to estimate server load etc.
- Random - A traditional task assignment policy
- TAGS (Type 2): Mor Harchol-Balter (Journal of the ACM (JACM) 2002)
- SITA-E (Type 1): Mor Harchol-Balter et al (JPDC 1999)
- ADAPTLOAD (Type 1): Qi Zhang et al (IEEE Transactions on Parallel and Distributed Systems March 2005)
Related Work: Random, Round-Robin
Related Work: TAGS

TAGS (*) [Mor Harchol-Balter (Journal of the ACM (JACM) 2002)]

Diagram:

```
TAGS
    ↓
    K - S_1
    ↓
    S_1 - S_2
    ↓
    K < S_1 < S_2 < S(n-1) < P
    ↓
    S(n-1) - P
```
SITA-E [Mor Harchol-Balter et al (JPDC 1999)]

SITA-E

K-S1

S1-S2

K < S1 < S2 < S(n-1) < P

S(n-1)-P
ADAPT-LOAD [Qi Zhang et al (IEEE Transactions on Parallel and Distributed Systems March 2005)]
Our contribution

- We investigate the performance of task assignment policies in cluster-based systems that support time sharing.
- We focus on heavy-tailed workload distributions and assume no prior knowledge about the actual sizes of tasks.
- We propose 3 models (MLMS, MLMS-M, MLMS-M*), provide an analytical model for each model using queueing theory and investigate the performance (i.e. expected waiting time) of these models under a wide range of workload conditions.
MLTP (Multi-level Time Sharing Model)

- MLTP gives preferential treatment to tasks with short processing requirements.
- MLTP performance well under heavy-tailed workload distributions.
- MLTP does not assume prior knowledge about the actual sizes of tasks.
- How does MLTP work?

Figure: Priority queue vs multi-level time sharing
Task Assignment Models

Figure: MLMS and MLMS-M

$K < Q(1,1) < Q(1,2) < \ldots < Q(1,N1) \ldots < Q(n,1) \ldots < Q(n,Nn) = p$

Malith Jayasinghe et al.
Figure: TAGS
We use Bounded Pareto Distribution to represent heavy-tailed traffic.

Impact of variability (α) on the performance (X axis = α).

System Load: Low (0.3), Moderate (0.5) and High (0.7).
MLMS (Multi-level Multi-server Task Assignment)

Figure: MLMS
MLMS (Multi-level Multi-server Task Assignment)

\[E[W]_{MLMS} = \sum_{k=1}^{N} E[W_k] \int_{Q_{k-1}}^{Q_k} f(x) \, dx \] \hspace{1cm} (2)

\[E[W_i] = \frac{\lambda E[U_i^2] + \sum_{k=i+1}^{N} \Lambda_k E[T_k^2]}{2(1 - \lambda E[U_{i-1}])(1 - \lambda E[U_i])} \]

\[+ \frac{Q_{i-1}}{(1 - \lambda E[U_{i-1})} - Q_{i-1} \] \hspace{1cm} (3)
MLMS : Performance Evaluation

TAGS Load = 0.3
MLMS 2-levels Load = 0.3
MLMS 3-levels Load = 0.3
MLMS 4-levels Load = 0.3
MLMS 5-levels Load = 0.3
MLMS 10-levels Load = 0.3
MLMS 20-levels Load = 0.3

TAGS Load = 0.5
MLMS 2-levels Load = 0.5
MLMS 3-levels Load = 0.5
MLMS 4-levels Load = 0.5
MLMS 5-levels Load = 0.5
MLMS 10-levels Load = 0.5
MLMS 20-levels Load = 0.5

TAGS Load = 0.7
MLMS 2-levels Load = 0.7
MLMS 3-levels Load = 0.7
MLMS 4-levels Load = 0.7
MLMS 5-levels Load = 0.7
MLMS 10-levels Load = 0.7
MLMS 20-levels Load = 0.7

Malith Jayasinghe et al.
An increase in the number levels results in an improvement in the performance.

Under the system load of 0.3, TAGS outperforms MLMS for almost all the variabilities (i.e. all α values considered).

Under moderate (0.5) and high systems loads (0.7), MLMS outperforms TAGS for a range of α values. Under the system load of 0.7, MLMS outperforms TAGS in two different α ranges. For a MLMS policy with 20 levels, these two ranges are 0.4 - 0.7 and 1.3 - 2.0.

MLMS may require a large number of levels if MLMS is to outperform TAGS. For example, under the system load of 0.7, when $\alpha = 0.5$, MLMS with 20 levels outperforms TAGS by a factor of 5 while under the same conditions, TAGS outperforms MLMS with 2 levels by a factor of 1.5.
MLMS-M (Multi-level Multi-server Task Assignment with Task Migration)

Figure: MLMS-M
$E[W_{(i,j)}]$ expected waiting time of a task in i^{th} host’s j^{th} queue

$$P_{(i,j)} = \int_{Q_{(i,j-1)}}^{Q_{(i,j)}} f(x)dx$$ (4)

$$P_i = \int_{Q_{(i-1,N_i-1)}}^{Q_{(i,N_i)}} f(x)dx$$ (5)

$$E[W_i] = \sum_{j=1}^{N_i} E[W_{(i,j)}] \frac{P_{(i,j)}}{P_i}$$ (6)

$$E[W] = E[W_1]P_1 + (E[W_1] + E[W_2])P_2 + \ldots + (E[W_1] + \ldots + E[W_n])P_n$$ (7)
Performance improves with the number of levels.

MLMS-M outperforms TAGS for almost all the cases considered.

The highest improvement in the performance is seen under high system loads and very high task sizes variabilities (i.e. low α values).

For example, when the system load is 0.7 and α is 0.5, MLMS-M with 2 levels outperforms TAGS by a factor of 2.7. Under the same conditions, MLMS-M with 5 levels outperforms TAGS by a factor 6.75.

Under a fixed system load the expected waiting time does not always decrease with increasing α. This is particularly the case under moderate to high system loads when the number of levels is relatively high.
MLMS-M: Performance Evaluation

Figure: Excess load under MLMS-M

Graph showing the excess load under MLMS-M with different load and levels combinations.
Figure: MLMS-M: The impact of hosts on the expected waiting time
Figure: MLMS-M*
Performance Analysis of MLMS-M*: Summary

$E[W_{(i,j)}]$ expected waiting time of a task in i^{th} host’s j^{th} tier

$$P_{(i,j)} = \int_{Q(i,j-1)}^{Q(i,j)} f(x) \, dx$$

(8)

$$P_i = \int_{Q(i-1,N_i-1)}^{Q(i,N_i)} f(x) \, dx$$

(9)

$$E[W_i] = \sum_{j=1}^{N_i} E[W_{(i,j)}] \frac{P_{(i,j)}}{P_i}$$

(10)

$$E[W] = E[W_1]P_1 + (E[W_1] + E[W_2])P_2 + \ldots + (E[W_1] + \ldots + E[W_n])P_n$$

(11)
MLMS-M* : Performance Evaluation

- MLMS-M* maintains satisfactory performance under high α values.
- Unlike in MLMS-M, there is no significant performance degradations under high α values for all 3 system loads considered.
- MLMS* generates relatively low excess.

Figure: Comparison of Excess Load : MLMS-M and MLMS-M*
We provided detailed performance analysis of 3 novel task assignment policies (based on MLTP).

The analysis assumed heavy-tailed workload distributions because heavy-tailed distributions have been proven to represent many realistic computer workloads.

MLMS reduce the variability of tasks within hosts and MLMS-M and MLMS-M* reduced the variability of tasks at host level and within hosts and it MLMS outperformed TAGS under specific workload conditions.

MLMS-M outperformed TAGS for all the scenarios considered. The most significant performance improvement is seen under high task size variabilities and high system loads. Under low task size variabilities MLMS-M generated large amount of excess load resulting its performance to degrade.

MLMS-M* addressed this issue via its multi-tier host architecture. It outperformed TAGS and MLMS-M under high α values.